
A Formal Security Analysis of ERTMS Train to

Trackside Protocols

Joeri de Ruiter, Richard J. Thomas, and Tom Chothia

School of Computer Science
University of Birmingham

United Kingdom

Abstract. This paper presents a formal analysis of the train to trackside
communication protocols used in the European Railway Tra�c Manage-
ment System (ERTMS) standard, and in particular the EuroRadio pro-
tocol. This protocol is used to secure important commands sent between
train and trackside, such as movement authority and emergency stop
messages. We perform our analysis using the applied pi-calculus and the
ProVerif tool. This provides a powerful and expressive framework for
protocol analysis and allows to check a wide range of security properties
based on checking correspondence assertions. We show how it is possi-
ble to model the protocol’s counter-style timestamps in this framework.
We define ProVerif assertions that allow us to check for secrecy of long
and short term keys, authenticity of entities, message insertion, deletion,
replay and reordering. We find that the protocol provides most of these
security features, however it allows undetectable message deletion and
the forging of emergency messages. We discuss the relevance of these
results and make recommendations to further enhance the security of
ERTMS.

1 Introduction

The European Railway Tra�c Management System (ERTMS) is a European
standard for next-generation train management and signalling. It is intended to
make it easier for trains to cross borders and optimise the running of the railway.
Currently the system is being rolled out across Europe, and on high-speed lines
across the world. By the end of 2014, over half of the 80,000 kilometres of tracks
that were equipped with ERTMS were located in Asia.1

Within this wholly-digitised system, a number of protocols are employed to
provide functionality to the ERTMS platform. For example, the EuroRadio pro-
tocol is used to ensure that messages exchanged between entities are genuine
and have not been forged by an attacker, or to handover trains from one system
responsible for a stretch of track to another. Moving from a largely analogue,
manual or semi-automatic system to a digital, fully supervised system may ex-
pose it to threats which were not previously possible. These threats require

1
http://www.ertms.net

appropriate analysis to ensure that the replacement system protects the under-
lying infrastructure and vehicles from attacks. In such a safety-critical system,
it is key that the train is never allowed to be influenced externally to enter an
unsafe state or perform in a manner which is not expected.

In this paper we perform a formal analysis of the EuroRadio protocol and
parts of the ERTMS application protocol using the applied pi-calculus [1] and
the ProVerif analysis tool [4, 5]. The applied pi-calculus provides an expressive,
powerful framework to model protocols; functions can be used to define new cryp-
tographic primitives. The ProVerif tool can automatically check a wide range of
security properties including the secrecy of particular values, equivalence be-
tween processes and correspondence assertions between modeller-defined events.
ProVerif uses a theorem proving method to establish if these queries hold, there-
fore it is able to establish if secrecy properties hold even in the face of an active
attacker, for an unlimited number of protocol runs and arbitrary attacker be-
haviour. However, it may not always terminate and it makes the usual Dolev-Yao
assumptions: i.e., the cryptography is unbreakable, the attacker cannot learn key
material by other means than observing communication and interacting with the
protocol participants, etc. The applied pi-calculus’s expressiveness and the pow-
erful checking methods of ProVerif have led to them being used to analyse a
wide range of security properties for many important systems.2

We model the EuroRadio protocol in the applied pi-calculus, with one process
representing the train side of the communication and another process represent-
ing the Radio Block Controller (RBC) which receives messages from the train.
Our model allows for an arbitrary number of trains and RBCs running at the
same time, and, using standard ProVerif methods, we can check if EuroRadio
keeps its keys secret and successfully authenticates the trains and the RBC.
After the EuroRadio protocol finishes, we model the application level sending
three messages. These application level messages sent over EuroRadio use a
counter-style timestamp to help ensure freshness and stop attacks, where we in-
troduce new functions to model this. We tag our model with events indicating
each party starting a run of EuroRadio, finishing a run of EuroRadio, sending
messages and receiving messages. We then come up with novel correspondence
assertions between these events which let us check if messages can be deleted,
inserted, reordered or replayed.

Checking our correspondence assertions in ProVerif, we find that the protocol
succeeds in most of its security goals, i.e., an attacker cannot learn the secret keys
in use, or pretend to be a train or a RBC. Furthermore, after successfully com-
pleting a run of the EuroRadio protocol both sides will have securely established
a secret session key. However, we also find that the attacker may delete/jam
messages without this being detected, they can inject emergency stop messages
into a communication between an train and an RBC, and that an attacker may
change the “safety feature” in a communication, possibly downgrading security.
These issues could be looked at as moderately security critical, we do not believe

2 A collection of such studies can be found at http://prosecco.gforge.inria.fr/

personal/bblanche/proverif/proverif-users.html

that they require immediate fixes but that designers and train operators should
be aware of them.

Related Work: Some past work has also looked at the EuroRadio protocol:
Esposito et al. [10] and Franekova et al. [11] use UML, Zhang et al. [18] use the
SPIN model checker and Hongjie et al. in [14] use Petrinets. However, all of these
analyses only look at single runs of the protocol, they do not consider an active
attacker, and they do not try to test the security properties we focus on in this
paper, rather they look at general correctness issues such as deadlock detection.
A generic analysis of ERTMS was performed by Bloomfield et al. [6], however
the paper itself gives a high-level overview of the process involved, and does not
specify exact issues and mitigations. Our methodology in this paper is similar to
our previous work that has included looked at modelling EMV protocols [8] and
e-passports [3] in the applied pi-calculus. Other work looks at complex models
of time in the applied pi-calculus (e.g. [7, 15]) - our novel modelling of counter-
style timestamps provides an abstract model of time which is much similar than
these, but still expressive enough to model ERTMS.

The contributions of this paper are:

– Formal analysis of the EuroRadio protocol using the ProVerif tool.
– Introduction of a light-weight notion of counter-style timestamps in ProVerif.
– Showing how it is possible to use ProVerif to check if the attacker can delete,

insert and re-order messages.
– Identification of potential issues in the ERTMS protocols, with appropriate

recommendations.

In Section 2, we describe ERTMS and the EuroRadio protocol. We describe
our formal model in Section 3 and then analyse this model in Section 4. We
discuss the implications of our results in Section 5, and then we conclude in
Section 6.

2 ERTMS Communication

In this section, we present a high-level overview of the components within ERTMS
that are used for communication between the train and trackside equipment.

During its journey, a train communicates with a Radio Block Centre (RBC),
which provides commands to the train. RBCs are responsible for a specific geo-
graphical area of approximately 70 kilometres [2]. They authorise trains to drive
on particular parts of the track using Movement Authorities, which also include
maximum speeds. Every RBC is connected to a fixed network in order to hand
over trains to the next RBC when a train leaves its area of responsibility.

Within ERTMS, several layers are used for communications between the
train and trackside (see Figure 1), where each layer provides some services and
security features to upper layers.

Application layer Type Length Time-stamp [data] Padding

EuroRadio

Type Direction MAC

GSM-R GSM-R header GSM-R footer

Fig. 1. Overview of the di↵erent communication layers in ERTMS.

GSM-R is the lowest layer for the communication between trains and the back-
end specified in ERTMS [13, 12]. It is based on the original GSM specification,
but provides additional rail-specific functionality and makes use of di↵erent fre-
quencies. The additional functionality includes emergency calls and communica-
tions involving multiple drivers. Also, pre-defined short messages are included in
the specification, which may be sent by driver and signaller, for example, ‘stand-
ing at signal’ [16], where the signaller may also send a message to the train at
any time informing the driver that they must contact the signaller.

The EuroRadio Protocol is used on top of GSM-R and added to provide
additional authentication and integrity protection to the communication [17].
EuroRadio uses the GSM-R communication layer to send messages between the
base station and the train. When a connection is set up, an authentication pro-
tocol is used to provide mutual authentication for the train and back-end (see
Figure 2). The two parties exchange nonces and compute a shared symmetric
session key based on this and a unique train key. This session key is then used to
compute a MAC to prove knowledge of the session key to the other party. Once
the authentication protocol has completed successfully, the application layer can
use the communication channel and the EuroRadio layer will add a MAC to all
messages that have a normal priority. Exactly which MAC algorithm is used is
indicated in a data field called the Safety Feature.

The Application Layer builds on top of the EuroRadio layer and is described
in [9]. As not all threats are taken care of by the lower layers, the application
layer has to provide protection against replay and deletion attacks. A 32 bit
timestamp is added to the messages. Every received message needs to contain
a timestamp that is greater than that of the previous message, the exact value
of the time stamp is not important, therefore it acts partly as a counter. If the
timestamp is not greater than the last message received, the new message will
be discarded. In order to synchronise the time between the train and the RBC,
the RBC will maintain multiple clocks and sets them based on the time from
the train.

A B

R

B

2
R

{0, 1}64

Type

B

| AU1 | to responder | ID
B

| SaF | R
B

R

A

2
R

{0, 1}64
K

S,1 = 3DES((K1,K2,K3), RL

A

|RL

B

)
K

S,2 = 3DES((K1,K2,K3), R
R

A

|RR

B

)
K

S,1 = 3DES((K3,K2,K1), R
L

A

|RL

B

)

Type

A

| AU2 | to initiator | ID
A

| SaF | R
A

| MAC(K
S

,
length | ID

B

| Type
A

| AU2 | to initiator | ID
A

| SaF |
R

A

| R
B

| ID
B

| padding)

K

S,1 = 3DES((K1,K2,K3), R
L

A

|RL

B

)
K

S,2 = 3DES((K1,K2,K3), R
R

A

|RR

B

)
K

S,1 = 3DES((K3,K2,K1), RL

A

|RL

B

)

000 | AU3 | to responder | MAC(K
S

, length | ID
A

| 000
| AU3 | to responder | R

B

| R
A

| padding)

Key Description

AU
x

Authentication Message x

ID
x

ETCS Entity ID of party x

R
x

Nonce generated by party x

SaF Safety Feature selected
To Initiator/Responder Flag to indicate in which direction the message is being sent
Type

x

ETCS Entity ID type (e.g. RBC or train)

Fig. 2. Authentication protocol used by EuroRadio. A and B share a symmetric key
K. RL and R

R are used to indicate the leftmost and rightmost 32 bits respectively. A
3DES key K consists of three single DES keys: K = (K1,K2,K3).

3 Formal Modelling in ProVerif

We performed our formal analysis of the EuroRadio key establishment protocol
and part of the application level protocol using the applied pi-calculus [1] and
the ProVerif automated verifier [4]. This protocol analysis framework can be
used to identify potential leakage of information or other flaws in the protocols.
The ProVerif syntax for the applied pi-calculus is given in Figure 3.

This language allows us to specify processes that perform inputs and out-
puts, run in parallel and replicate. The calculus also allows processes to declare
new, private names which can be used as private channels or nonces [5]. Func-
tions in the applied pi-calculus can be used to model a range of cryptographic
primitives, e.g. MACs, signing and key generation. These functions abstract any
implementations, which are therefore considered to be cryptographically perfect.
In our analysis, we focus only on the protocol, rather than any weaknesses and

M,N ::= terms
x, y, z variables
a, b, c, k, s names
f(M1, . . . ,Mn

) constructor application

D ::= g(M1, . . . ,Mn

) destructor application

P,Q ::= processes
0 nil
out (M,N).P output N on channel M
in (M,x).P input x from channel M
P | Q parallel composition
!P replication
⌫ a.P create new name
let x = D in P else Q term evaluation
event(x) execute event

Fig. 3. Syntax of the applied pi calculus

exposure as the result of cryptographic schemes used. The “let” statement can
be used to check that two terms that used these equations are equal and branch
on the result. This can be used to encode “if” statements, and conditional inputs
in (c,=a).P which inputs a value from channel c and proceeds only if the value
received equals a (see e.g. [5]). For the verification, events can be added to a
model. These events can be used to identify critical points of the protocol, and
may be parameterised with variables from the model. Currently, the ProVerif
tool is able to make guarantees for soundness, where if no attack is found, it is
correct, however, it is not complete and might return false attacks [5].

ProVerif supports several types of queries to check security properties of pro-
tocols. The most basic type is to check for secrecy, i.e. whether the attacker is
able to learn specific values. This can be used to verify whether cryptographic
keys do not leak in a protocol. Another type of query is correspondence asser-
tions, which can be used to check that if a particular event is executed, an-
other event was executed before. Two types of correspondence assertions can be
checked by ProVerif: non-injective and injective. An example of a non-injective
query is ev:event1(vars) ==> ev:event2(vars), which holds if event2 was
executed at some point before event1. For an injective assertion to hold, say
evinj:event1(vars) ==> evinj:event2(vars), for every execution of event1
there must have been a unique execution of event2.

Our Model of EuroRadio Our models of the two parties in the EuroRadio
protocol are given in figures 4 and 5. For the analysis of normal priority messages,
these processes are followed by the ones in figures 6 and 7 respectively. In these
last processes three messages are sent and received, where MACs and timestamps
are added and checked. Another model was constructed to check high-priority
messages. This model is almost the same as for the normal priority messages,

l e t Train =
(⇤ Set up a new sess ion for the model ⇤)
(⇤ Create a f re sh sess ion i d e n t i f i e r used to l i n k d i f f e r e n t events

in the model ⇤)
new s e s s i o n ;
(⇤ Get the i d en t i t y of the RBC the t ra in wants to communicate with ⇤)
in (id , r b c e t c s i d) ;
(⇤ Star t of the ac tua l authent ica t ion protoco l ⇤)
(⇤ T�CONN. reques t �� Au1 SaPDU ⇤)
new trainNonce ;
event t r a i n S t a r t S e s s i o n (r b c e t c s i d , t r a i n e t c s i d , trainNonce , SAF) ;
out (c , (TRAIN ETCS ID TYPE, AU1, DF SEND, t r a i n e t c s i d , SAF,

trainNonce)) ;
(⇤ T�CONN. confirmation �� Au2 SaPDU ⇤)
in (c , (=RBC ETCS ID TYPE, =AU2, =DF RESP, i n r b c e t c s i d , rbcSaF ,

rbcNonce , inMAC)) ;
(⇤ Generate the sess ion key ⇤)
l e t trainKS = genSessionKey (trainNonce , rbcNonce , getKey (

i n r b c e t c s i d , t r a i n e t c s i d)) in

(⇤ Output encrypted sec re t to check secrecy of keys ⇤)
out (c , encrypt (SECRET, trainKS)) ;
out (c , encrypt (SECRET, getKey (i n r b c e t c s i d , t r a i n e t c s i d))) ;
(⇤ Verify whether the rece ived MAC i s correc t ⇤)
i f inMAC = mac(trainKS , ((PAYLOADLENGTH, t r a i n e t c s i d ,

RBC ETCS ID TYPE, AU2, DF RESP, i n r b c e t c s i d , rbcSaF) , rbcNonce ,
trainNonce , t r a i n e t c s i d)) then

(⇤ T�DATA. reques t �� Au3 SaPDU ⇤)
event t r a i nF i n i s hS e s s i o n (i n r b c e t c s i d , t r a i n e t c s i d , trainNonce ,

rbcSaF , rbcNonce , trainKS) ;
out (c , (ZEROS, AU3, DF SEND, mac(trainKS , (PAYLOADLENGTH,

t r a i n e t c s i d , ZEROS, AU3, DF SEND, trainNonce , rbcNonce))))

Fig. 4. The ProVerif model of the calling party in the EuroRadio protocol

except no MACs are added to messages in the application layer and timestamps
are not checked. All models are available online.3

The expressive language of ProVerif allows us to define processes which are
run by the verifier in a number of ways. In our model, we instantiate both
models for the RBC and train as replicating processes using the ‘!’ command,
which may be nested, i.e. an arbitrary number of trains and RBCs can be run
in parallel. This allows the verifier to provide a thorough examination of the
protocol, giving the attacker in ProVerif the opportunity to reuse variables it
has previously observed in previous protocol runs. ProVerif is then able to assess
whether the properties defined hold, or it provides a trace if an attack is found.

Next we will discuss the models in figures 4 and 5. To represent the EuroRa-
dio protocol, we must first introduce a session value which allows us to perform
additional verification on the protocol for the reordering and replay of messages.
Additionally, during the setup process, the train and RBC are sent the identity
of the RBC. This allows us to assert that the train knows the identity of the
RBC it is connecting to. The session, as specified by the EuroRadio specifications
then starts, where the nonces and identities are exchanged, with the appropriate
derivation of the session key to use. We generate and output some secret value
encrypted with the negotiated session key. The confidentiality of this secret value

3
http://www.cs.bham.ac.uk/

~

rjt195/rssrail2016

l e t RBC =
(⇤ Set up a new sess ion for the model ⇤)

(⇤ Get an RBC id en t i t y ⇤)
in (id , r b c e t c s i d) ;
(⇤ Star t of the ac tua l authent ica t ion protoco l ⇤)
(⇤ T�CONN. ind ica t ion �� Au1 SaPDU ⇤)
new rbcNonce ;
in (c , (sent ETCS ID TYPE , =AU1, =DF SEND, i n t r a i n e t c s i d , trainSaF ,

trainNonce)) ;
event rb cS ta r tS e s s i on (r b c e t c s i d , i n t r a i n e t c s i d , rbcNonce ,

trainSaF , trainNonce) ;
(⇤ Generate the sess ion key ⇤)
l e t rbcKS = genSessionKey (trainNonce , rbcNonce , getKey (r b c e t c s i d ,

i n t r a i n e t c s i d)) in

(⇤ Output encrypted sec re t to check secrecy of keys ⇤)
out (c , encrypt (SECRET, rbcKS)) ;
out (c , encrypt (SECRET, getKey (r b c e t c s i d , i n t r a i n e t c s i d))) ;
(⇤ T�CONN. response �� Au2 SaPDU ⇤)
out (c , (RBC ETCS ID TYPE, AU2, DF RESP, r b c e t c s i d , trainSaF ,

rbcNonce , mac(rbcKS , ((PAYLOADLENGTH, i n t r a i n e t c s i d ,
RBC ETCS ID TYPE, AU2, DF RESP, r b c e t c s i d , trainSaF) , rbcNonce ,
trainNonce , i n t r a i n e t c s i d)))) ;

(⇤ AU3 SaPDU ⇤)
in (c ,(=ZEROS, =AU3, =DF SEND, inMAC)) ;
(⇤ Verify whether the rece ived MAC i s correc t ⇤)
i f inMAC = mac(rbcKS , (PAYLOADLENGTH, i n t r a i n e t c s i d , ZEROS, AU3,

DF SEND , trainNonce , rbcNonce)) then

event rb cF in i shSe s s i on (r b c e t c s i d , i n t r a i n e t c s i d , rbcNonce ,
trainSaF , trainNonce , rbcKS)

Fig. 5. The ProVerif model of the called party in the EuroRadio protocol

is checked to verify that the attacker is not able to establish the session key. At
each stage of messages being received, we verify the MAC prior to proceeding
with protocol execution. This simulates the process that is in use within Euro-
Radio. After this, the EuroRadio link is established. We then are able to use one
of two di↵erent variants of the model - for normal or high-priority messages.

Figures 6 and 7 show the application messages sent through EuroRadio,
including the use of timestamps. Once the session is established, we generate
some value for a timestamp, and proceed to use it when sending messages. Each
time, we use a light-weight notion of time which we discuss below. The RBC
then verifies the timestamps were greater than that of the previous received

(⇤ Send three messages from the t ra in to the RBC ⇤)
new time ;
l e t msg1 = (DT, time , MESSAGE 1) in

event DataSent1 (s e s s i on , msg1) ;
out (c , (msg1 , mac(trainKS , msg1))) ;
l e t msg2 = (DT, inc (time) , MESSAGE 2) in

event DataSent2 (s e s s i on , msg2) ;
out (c , (msg2 , mac(trainKS , msg2))) ;
l e t msg3 = (DT, inc (inc (time)) , MESSAGE 3) in

event DataSent3 (s e s s i on , msg3) ;
out (c , (msg3 , mac(trainKS , msg3)))

Fig. 6. The ProVerif model of the application layer to send messages with normal
priority

(⇤ Receive messages from the t ra in ⇤)
in (c , ((=DT, timeA , msgA) , macA)) ;
(⇤ Check the MAC of the rece ived message ⇤)
i f macA = mac(rbcKS , (DT, timeA , msgA)) then

event DataReceived1 ((DT, timeA , msgA)) ;
in (c , ((=DT, timeB , msgB) , macB)) ;
(⇤ Check the MAC and timestamp of the rece ived message ⇤)
i f macB = mac(rbcKS , (DT, timeB , msgB)) then

i f g r e a t e r : timeB , timeA then

event DataReceived2 ((DT, timeB , msgB)) ;
event MessagesReceived2 ((DT, timeA , msgA) , (DT, timeB , msgB)) ;
in (c , ((=DT, timeC , msgC) , macC)) ;
(⇤ Check the MAC and timestamp of the rece ived message ⇤)
i f macC = mac(rbcKS , (DT, timeC , msgC)) then

i f g r e a t e r : timeC , timeB then

event DataReceived3 ((DT, timeC , msgC)) ;
event MessagesReceived3 ((DT, timeA , msgA) , (DT, timeB , msgB) , (DT,

timeC , msgC))

Fig. 7. The ProVerif model of the application layer to receive messages with normal
priority

message, and if it is, it will accept the message and execute the appropriate
event to indicate that it was received in the context of that session. We include
the session to verify that an attacker cannot combine messages from di↵erent
sessions.

Modelling Counter-style Timestamps To support the checking of times-
tamps, we add a minimal notion of time to our model. In the application layer,
it is checked whether the timestamp on a message is greater than on the previous
message. For the time a counter on the train is used. In our model, we there-
fore only modelled relative time: time can increase and we can compare di↵erent
timestamps that are based on the same initial timestamp. This mean we have no
notion of how much time actions take, but our model proves to be su�cient for
its purpose. In Figure 8, our model of time can be found. A timestamp can be
increased using inc, and two timestamps can be compared using the predicate
greater.

data i n c /1 .
pred g r e a t e r /2 .
clauses

g r e a t e r : inc (x) , x ;
g r e a t e r : x , y �> g r e a t e r : inc (x) , y .

Fig. 8. The ProVerif model for counter-style timestamps

4 Analysis of ERTMS Protocols

Using ProVerif, we can check that the protocol keeps the keys secret and that
an attacker cannot disrupt the agreement process. These checks are standard

ProVerif queries. Next, we wish to check if an attacker can insert, reorder, replay
or delete messages without being noticed. Our methods of doing this are new,
and a contribution of this paper. We perform these checks by making the train
send three messages to the RBC and tagging each of these with a particular
event. We also use events to tag the three messages send by the train, and their
order, and the three messages received by the RBC and their order. We then
check for insertion, reordering, replay and deletion using queries on these events.

Secrecy of Keys We check if the EuroRadio protocol keeps the long term
RBC/train key and session key secret from an active attacker. This check is
performed by creating a new private value ‘SECRET’, encrypting this value
using these keys and publicly broadcasting the encryption. If the attacker can
then learn the value ‘SECRET’ it means the keys have been learnt. We checked
this using the query attacker:SECRET. This verifies whether the attacker is able
to establish the value ‘SECRET’. Private values are not disclosed to the attacker
and ‘SECRET’ is only output on the public communication encrypted using the
long term and session key. Therefore, if the attacker is able to learn the value
‘SECRET’ this means at least one of the keys was compromised.

Running ProVerif, we find that the attacker cannot learn the value ‘SE-
CRET’, this means that the EuroRadio protocol succeeds in its main goal of
keeping the cryptographic keys secure from an active Delov-Yao attacker. The
theorem proving method of ProVerif, further tells us that this holds for an un-
limited number of runs of the protocol.

Agreement on Shared Session Key Even if attackers cannot learn the ses-
sion key, they may still be able to interfere with the key establishment process.
To check if any such attacks are possible, we use the injective ProVerif corre-
spondence assertions:

evinj:trainFinishWithKey(ks) ==> evinj:rbcUsing(ks)

evinj:RBCFinishWithKey(ks) ==> evinj:trainUsing(ks)

These queries will only hold if, whenever the train believes it has successfully
completed the EuroRadio protocol having established the key ks, then there is a
single RBC that has also run the protocol and believes the established key is ks,
and vice versa. ProVerif tells us that these queries hold, therefore the EuroRadio
protocol succeeds in its second major goal of security and successfully setting up
a key between a train and a RBC.

Mutual Authentication: Agreement on All Shared Values To check if
it is possible for an attacker to interfere with any other parts of the protocol we
extend our queries with all the key values used by the train and the RBC, i.e.,
the nonces, the trains and RBC identities and the safety feature (SaF):

evinj:trainFinishSession(rbc_id,train_id,train_nonce,saf,

rbc_nonce,ks) ==>

evinj:rbcStartSession(rbc_id,train_id,rbc_nonce,saf,train_nonce)

evinj:rbcFinishSession(rbc_id,train_id,rbc_nonce,saf,train_nonce,

ks) ==>

evinj:trainStartSession(rbc_id,train_id,train_nonce,saf)

While the first correspondence assertion holds, the second fails. Looking at
the attack trace produced by ProVerif, we see that it is possible for the attacker
to redirect the messages from the train to a second, di↵erent RBC as the train
does not verify whether the returned ID is the same as the expected one. While
implemented systems might add a check of the RBC ID, the protocol specifi-
cation does not specify that the train explicitly checks it, or what to do if it is
incorrect. Second, we see that it is possible for an attacker the change the SaF
used in the communication as, again, this is not properly checked. We discuss
the relevance of these findings in the section below.

Ability to Insert Attacker Messages We use the event DataSent‘i’(m)

to mean that message m was the i-th message sent by the train, and the event
DataSent‘i’(m) to mean that message m was the i-th message received by the
RBC. We can check if an attacker can insert a message into the communication
phase of the protocol by checking that all message m received by the RBC where
send by the train either as its first, second or third message:

ev:DataReceived1(m) ==>

(ev:DataSent1(s2, m) | ev:DataSent2(s2, m) | ev:DataSent3(s2, m))

ev:DataReceived2(m) ==>

(ev:DataSent1(s2, m) | ev:DataSent2(s2, m) | ev:DataSent3(s2, m))

ev:DataReceived3(m) ==>

(ev:DataSent1(s2, m) | ev:DataSent2(s2, m) | ev:DataSent3(s2, m))

This holds, showing that the attacker cannot insert their own messages.

Ability to Replay Messages The above correspondence assertions show that
an attacker cannot insert their own messages, but they may still be able to
replay an old message, tricking the receiver into thinking it is fresh. We test for
replay attacks with a similar correspondence assertion, but this time we require
the correspondence to be injective, i.e., for each receive event there must exist a
single, unique send event:

evinj:DataReceived1(m) ==>

(evinj:DataSent1(s,m)|evinj:DataSent2(s,m)|evinj:DataSent3(s,m))

evinj:DataReceived2(m) ==>

(evinj:DataSent1(s,m)|evinj:DataSent2(s,m)|evinj:DataSent3(s,m))

evinj:DataReceived3(m) ==>

(evinj:DataSent1(s,m)|evinj:DataSent2(s,m)|evinj:DataSent3(s,m))

These correspondence all hold showing that the attacker cannot replay mes-
sages.

Ability to Reorder Messages Another way in which an attacker could in-
terfere with the communication would be to reorder the message, for instance
causing disruption by swapping the order of a go and stop message. As this
would not require additional messages, or replaying a message, it would not be
detected by the two correspondence assertions above.

The MessagesReceived3(m1, m2, m3) event indicates that the messages
m1, m2, m3 were received in that order. We check reordering using this event,
and an injective correspondence assertion on the order of the three messages
sent by the train:

evinj:MessagesReceived3(m1, m2, m3) ==>

(evinj:DataSent1(s,m1)&evinj:DataSent2(s,m2)&evinj:DataSent3(s,m3))

We find that this correspondence assertion holds. In our model the attacker
may also block messages, therefore even though this correspondence assertion
holds it may still be possible for an attacker to block one message and reorder
the other two (so meaning that the MessagesReceived3(m1, m2, m3) event is
never reached. Therefore, we also check the possible reordering of two messages:

evinj:MessagesReceived2(m1, m2) ==>

((evinj:DataSent1(s, m1) & evinj:DataSent2(s, m2)) |

(evinj:DataSent1(s, m1) & evinj:DataSent3(s, m2)) |

(evinj:DataSent2(s, m1) & evinj:DataSent3(s, m2)))

This correspondence assertion also holds showing that reordering is not pos-
sible.

Ability to Delete Messages without the Receiver Knowing While the
attacker can stop any message from being delivered we would like the protocol to
allow this to be detected. For example, the receiver should not accept a message
if the message sent before it did not arrive. We can check this with the following
correspondence assertions:

evinj:DataReceived1(m) ==> evinj:DataSent1(s, m)

evinj:DataReceived2(m) ==> evinj:DataSent2(s, m)

evinj:DataReceived3(m) ==> evinj:DataSent3(s, m)

These correspondence assertions checks to see if deletion or reordering is
possible, but as we have already shown that reordering is not possible this cor-
respondence assertion will only hold if deletion is impossible and only fail if
messages can be deleted.

We find that these correspondence assertions fail to hold, in particular, as
the counter-style timestamp can be any value greater than the previous message.
There is no simple method for the receiver to detect the absence of a message,
however, this can be partly mitigated by acknowledgements messages and time-
outs, as we discuss in the next section.

Analysis of Emergency Messages As described earlier, the application level
protocol does not use MACs to verify the emergency stop messages. To see what
e↵ect this has, we run each of the test described above on our second model,
which includes the sending of messages with no accompanying MAC. We find
that, as before, the secrecy of keys and authentication and agreement on the key
hold. However, message insertion, deletion, reordering and replay fail to hold.
This means that the attacker still cannot pretend to be a train or a RBC, and
it is still only possible to set up a communication between a genuine train and
RBC. However, once such a session has been set up it is possible for the attacker
to insert a stop message, which will be accepted by the train. We discuss the
relevance of this finding below.

5 Discussion and Recommendations

In this section, we present recommendations regarding the di↵erent issues that
were discovered in our analysis.

5.1 Inserting High-priority Messages

Our analysis showed it is possible to insert messages with high-priority as there is
no protection provided over these messages. Therefore, anyone with access to the
EuroRadio communication layer can insert emergency stop messages and trigger
a train to brake. Though this might not directly lead to incidents with trains
colliding, it can cause serious disruptions, for example, due to displaced crew
and rolling stock. These disruptions can have a higher impact on the network if
the emergency stop is carefully timed. For example, this happens when a train
is in a GSM-R radio hole with no reception. In this case, the RBC will not know
what has happened as it will not be able to communicate with the train and
therefore will not be able to cancel the emergency stop. The driver of the train
will need to follow special procedures until GSM-R coverage is available again.
It would then take even longer than usual to recover from the emergency stop,
which could seriously a↵ect other tra�c in the system as well.

To prevent unauthorised emergency stop messages from taking e↵ect, high-
priority messages should be authenticated using MACs as is the case with regular
priority messages. They can still be given priority over the other messages when
checking the MAC. A concern might be that keys could become corrupted, in
which case it should still be possible to fall back to voice communication (as is
used in most current systems). The application of a MAC to the high-priority
message would prevent misuse by an external actor by stopping them from being
able to successfully inject messages in the communication between a train and
RBC. Although, of course, an attacker could still cause disruption by other
means, such as jamming signals.

5.2 Deletion of Messages

The EuroRadio protocol does not protect against deletion of messages. This
needs to be taken care of by the application layer. The timestamps that are added
by the application layer do not protect against this. The sender of a message
can request an acknowledgement for the message from the recipient. This is not
the default though and needs to be done explicitly. Moreover, recipients have no
way to determine whether it had not successfully received messages. In the worst
case, an attacker could prevent reception (i.e. delete) emergency stop messages,
after which a train might enter a danger point, a stretch of track, where the
safety of the train may be compromised.

Though it is hard to prevent deletion of messages as an attacker could jam
all communication between two parties, it is possible to detect the deletion of
single messages. A simple way to do this is by adding a counter to all messages. If
this counter skips between two messages, you know a message was missed. This
would require changes to the current specifications to change both the message
format and add procedures what to do in case a missed message is detected.

The specification already has a measure that can help in the case of a jamming
attack. It is possible to let a train make an emergency stop if no messages are
received within a specific timeout period. This timeout and the action to be taken
if it expires are set using nationally set parameters, respectively T NVCONTACT

and M NVCONTACT. The possible actions to take are to trigger the normal brakes,
trip the onboard systems, including an immediate application of the emergency
brakes or perform no action. The default value, as set out in SUBSET-026 of the
ERTMS specifications are set to ‘no reaction’ with an infinite amount of time
specified, i.e. there is no timeout, for safe messages to be received. Using this
measure might result in problems with GSM-R black spots, i.e. if a train spends
too much time within a black spot the brakes would be automatically triggered.
However, the standard provides ways to inform the train of GSM-R black spots
and therefore this should not be a problem.

5.3 Disagreement over RBC Identity and Safety Feature

One issue identified that is not specifically covered in the EuroRadio specifica-
tions is that of ensuring that when a train commences a EuroRadio session, the
RBC that it establishes the session with is not only genuine, but also the correct
one to handle the train. When a train tries to set up a session it doesn’t always
know the identity of the RBC it will be talking to. In this case the tra�c could
be redirected to another RBC. At the ‘start of mission’, the train may invalidate
the RBC ID and phone number, for example, if it is recovered, in the case of the
train breaking down, or it loses state following a system reboot. The specifica-
tions [9] allow the last RBC ID and number to be reused, however they allow
the use of the EIRENE shortcode to use location-based addressing to contact
the most appropriate RBC for the area the train is connected to via GSM-R.
Finally, the driver may alternatively enter the number manually. The latter two

options allow the connection to an RBC which is not directly in the area that
the train should connect to.

When the train does know the identity of the RBC it wants to communicate
with, the standard does not specify what needs to be done if the expected identity
is di↵erent than the one received during the authentication protocol. It is not
even specified whether this should be checked. To make things less ambiguous,
we recommend to explicitly include in the protocol description that the RBC
identity needs to be checked, if known, and the connection should be aborted if
this check fails.

A similar issue involves the safety feature that is used to indicate which
MAC algorithm is to be used. The initiator of the protocol chooses a safety
feature and sends it to the recipient in the first message, after which the recipient
returns it in the second message. The standard does not specify what to do if the
safety features do not match. In the o�cial specification, only one safety feature
is currently supported, but for future versions, where di↵erent safety features
might be supported, it is crucial to add this. It should be enforced that the
selected safety feature is either equal to or more secure than what was sent by
the initiator.

6 Conclusions

We have presented a security analysis of ERTMS’s EuroRadio protocol and parts
of the application layer protocol. To do this, we developed a novel representation
of counter-style timestamps, and new correspondence assertions to test for mes-
sage insertion, deletion, reordering and replay. We found that EuroRadio defends
the security of its key and authenticates the parties involved against an active
Dolev-Yao attacker. However, it failed in some of the additional properties we
would liked to have seen, such as message deletion and insertion of emergency
messages. We discussed the relevance of these findings in the previous section.
Our results on messages are tested for the train sending three messages to the
RBC, as future work we would like to find a way of testing these results for
an arbitrary number of messages sent in either direction, and any interleaving
of normal and high-priority messages. While our analyses finds that the pro-
tocols do not protect from the insertion of high-priority emergency messages,
inserting packets into a GSM-R data stream may be di�cult and merits further
investigation. Our analysis also makes the assumption that the cryptographic
primitives used in ERTMS are secure, as future work we would like to examine
these primitives and test this belief.

Acknowledgements: We would like to thank Maria Vigliotti and Florent Pepin
from the UK’s Rail Safety and Standards Board (RSSB) for helpful discussion
regarding the security of ERTMS. Funding for this paper was provided by the
UK’s Centre for the Protection of National Infrastructure (CPNI) and Engi-
neering and Physical Sciences Research Council (EPSRC) via the SCEPTICS:
A SystematiC Evaluation Process for Threats to Industrial Control Systems
project.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Symposium on Principles of Programming Languages (POPL), 2001.

2. Ansaldo STS Group. Product portfolio and ERTMS/RTCS projects of Ansaldo
Segnalamento Ferroviario, 2008. http://old.fel.zcu.cz/Data/documents/

sem de 2008/AnsaldoSTS 08.pdf.
3. M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and

anonymity using the applied pi calculus. In Proceedings of the 23rd IEEE Computer
Security Foundations Symposium, CSF 2010, pages 107–121, 2010.

4. B. Blanchet. An e�cient cryptographic protocol verifier based on Prolog rules. In
Computer Security Foundations Workshop (CSFW), pages 82–96. IEEE, 2001.

5. B. Blanchet, B. Smyth, and V. Cheval. ProVerif 1.88: Automatic cryptographic
protocol verifier, user manual and tutorial, 2013.

6. R. Bloomfield, R. Bloomfield, I. Gashi, and R. Stroud. How secure is ERTMS?
In F. Ortmeier and P. Daniel, editors, Computer Safety, Reliability, and Security,
volume 7613 of Lecture Notes in Computer Science, pages 247–258. Springer Berlin
Heidelberg, 2012.

7. V. Cheval and V. Cortier. Timing attacks in security protocols: symbolic framework
and proof techniques. In Proceedings of the 4th Conference on Principles of Security
and Trust (POST’15), Lecture Notes in Computer Science, 2015.

8. T. Chothia, F. Garcia, J. de Ruiter, J. van den Breekel, and M. Thompson. Relay
cost bounding for contactless EMV payments. In R. Bhme and T. Okamoto,
editors, Financial Cryptography and Data Security, volume 8975 of Lecture Notes
in Computer Science, pages 189–206. Springer Berlin Heidelberg, 2015.

9. ERA. SUBSET-026: System requirements specification, version 3.5.0. Technical
report, 2015.

10. R. Esposito, A. Lazzaro, P. Marmo, and A. Sanseviero. Formal verification of
ERTMS EuroRadio safety critical protocol. Proceedings 4th symposium on Formal
Methods for Railway Operation and Control Systems (FORMS’03), 2003.

11. M. Franekova, K. Rastocny, A. Janota, and P. Chrtiansky. Safety Analysis of Cryp-
tography Mechanisms used in GSM for Railway. International Journal of Engi-
neering, 11(1):207–212, 2011. http://annals.fih.upt.ro/pdf-full/2011/ANNALS-
2011-1-34.pdf.

12. GSM-R Functional Group. EIRENE Functional Requirements Specification, ver-
sion 7.4.0. Technical report, 2014.

13. GSM-R Functional Group. EIRENE System Requirements Specification, version
15.4.0. Technical report, 2014.

14. L. Hongjie, C. Lijie, and N. Bin. Petrinet based analysis of the safety commu-
nication protocol. TELKOMNIKA Indonesian Journal of Electrical Engineering,
11(10):6034–6041, 2013.

15. L. Li, J. Sun, Y. Liu, M. Sun, and J. S. Dong. A formal specification and verification
framework for timed security protocols. In TSE in Submission, 2015.

16. RSSB. GSM-R User Procedures, issue 7.1. Technical report, 2015.
17. UNISIG. SUBSET-037 - EuroRadio FIS, version 3.2.0. Technical report, 2015.
18. Y. Zhang, T. Tang, K. Li, J. M. Mera, L. Zhu, L. Zhao, and T. Xu. Formal

verification of safety protocol in train control system. Science China Technological
Sciences, 54(11):3078–3090, 2011.

